Log InSign Up

IB Mathematics

Applications and Interpretation SLFormula Booklet

Prior learning

DescriptionFormula
Area of a parallelogram\displaystyle \text{Area of a parallelogram}A=bh, where b is the base, h is the height\displaystyle A = bh, \text{ where } b \text{ is the base, } h \text{ is the height}
Area of a triangle\displaystyle \text{Area of a triangle}A=12(bh), where b is the base, h is the height\displaystyle A = \frac{1}{2}(bh), \text{ where } b \text{ is the base, } h \text{ is the height}
Area of a trapezoid\displaystyle \text{Area of a trapezoid}A=12(a+b)h, where a and b are the parallel sides, h is the height\displaystyle A = \frac{1}{2}(a+b)h, \text{ where } a \text{ and } b \text{ are the parallel sides, } h \text{ is the height}
Area of a circle\displaystyle \text{Area of a circle}A=πr2, where r is the radius\displaystyle A = \pi r^2, \text{ where } r \text{ is the radius}
Circumference of a circle\displaystyle \text{Circumference of a circle}C=2πr, where r is the radius\displaystyle C = 2\pi r, \text{ where } r \text{ is the radius}
Volume of a cuboid\displaystyle \text{Volume of a cuboid}V=lwh, where l is the length, w is the width, h is the height\displaystyle V = lwh, \text{ where } l \text{ is the length, } w \text{ is the width, } h \text{ is the height}
Volume of a cylinder\displaystyle \text{Volume of a cylinder}V=πr2h, where r is the radius, h is the height\displaystyle V = \pi r^2h, \text{ where } r \text{ is the radius, } h \text{ is the height}
Volume of a prism\displaystyle \text{Volume of a prism}V=Ah, where A is the area of cross-section, h is the height\displaystyle V = Ah, \text{ where } A \text{ is the area of cross-section, } h \text{ is the height}
Area of the curved surface ofa cylinder\displaystyle \text{Area of the curved surface of}\\ \text{a cylinder}A=2πrh, where r is the radius, h is the height\displaystyle A = 2\pi rh, \text{ where } r \text{ is the radius, } h \text{ is the height}
Distance between twopoints (x1,y1) and (x2,y2)\displaystyle \text{Distance between two}\\ \text{points $(x_1, y_1)$ and $(x_2, y_2)$}d=(x1x2)2+(y1y2)2\displaystyle d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}
Coordinates of the midpoint ofa line segment with endpoints(x1,y1) and (x2,y2)\displaystyle \text{Coordinates of the midpoint of}\\ \text{a line segment with endpoints}\\ \text{$(x_1, y_1)$ and $(x_2, y_2)$}(x1+x22,y1+y22)\displaystyle \displaystyle\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)
Solutions of a quadraticequation (HL only)\displaystyle \text{Solutions of a quadratic}\\ \text{equation (HL only)}The solutions of ax2+bx+c=0 are x=b±b24ac2a, a0\displaystyle \text{The solutions of } ax^2 + bx + c = 0 \text{ are } x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \text{ } a \neq 0

Topic 1: Number and algebra

TopicDescriptionFormula
SL 1.2\displaystyle \text{SL 1.2}The nth term of anarithmetic sequence\displaystyle \text{The $n$th term of an}\\ \text{arithmetic sequence}un=u1+(n1)d\displaystyle u_n = u_1 + (n-1)d
SL 1.2\displaystyle \text{SL 1.2}The sum of n terms of anarithmetic sequence\displaystyle \text{The sum of $n$ terms of an}\\ \text{arithmetic sequence}Sn=n2(2u1+(n1)d);  Sn=n2(u1+un)\displaystyle \displaystyle S_n = \frac{n}{2}(2u_1 + (n-1)d); \; \displaystyle S_n = \frac{n}{2}(u_1 + u_n)
SL 1.3\displaystyle \text{SL 1.3}The nth term of ageometric sequence\displaystyle \text{The $n$th term of a}\\ \text{geometric sequence}un=u1rn1\displaystyle u_n = u_1r^{n-1}
SL 1.3\displaystyle \text{SL 1.3}The sum of n terms of afinite geometric sequence\displaystyle \text{The sum of $n$ terms of a}\\ \text{finite geometric sequence}Sn=u1(rn1)r1=u1(1rn)1r,  r1\displaystyle \displaystyle S_n = \frac{u_1(r^n - 1)}{r-1} = \frac{u_1(1-r^n)}{1-r}, \; r \neq 1
SL 1.4\displaystyle \text{SL 1.4}Compound interest\displaystyle \text{Compound interest}FV=PV×(1+r100k)kn, where FV is the future value,where PV is the present value, n is the number of years,k is the number of compounding periods per year,r% is the nominal annual rate of interest\displaystyle \displaystyle FV = PV \times \left(1 + \frac{r}{100k}\right)^{kn}, \text{ where }FV\text{ is the future value,}\\[1em] \text{where }PV\text{ is the present value, }n\text{ is the number of years,}\\ \text{$k$ is the number of compounding periods per year,}\\ \text{$r\%$ is the nominal annual rate of interest}
SL 1.5\displaystyle \text{SL 1.5}Exponents and logarithms\displaystyle \text{Exponents and logarithms}ax=bx=logab, where a>0,b>0,a1\displaystyle a^x = b \Leftrightarrow x = \log_a b, \text{ where } a > 0, b > 0, a \neq 1
SL 1.6\displaystyle \text{SL 1.6}Percentage error\displaystyle \text{Percentage error}ε=vAvEvE×100%, where vE is the exact value and vA isthe approximate value of v\displaystyle \varepsilon = \left|\frac{v_A - v_E}{v_E}\right| \times 100\%, \text{ where } v_E \text{ is the exact value and } v_A \text{ is}\\[1em] \text{the approximate value of } v

Topic 2: Functions

TopicDescriptionFormula
SL 2.1\displaystyle \text{SL 2.1}Equations of a straight line\displaystyle \text{Equations of a straight line}y=mx+c;  ax+by+d=0;yy1=m(xx1)\displaystyle y = mx + c; \; ax + by + d = 0; \\ y - y_1 = m(x - x_1)
SL 2.1\displaystyle \text{SL 2.1}Gradient formula\displaystyle \text{Gradient formula}m=y2y1x2x1\displaystyle \displaystyle m = \frac{y_2 - y_1}{x_2 - x_1}
SL 2.6\displaystyle \text{SL 2.6}Axis of symmetry of thegraph of a quadraticfunction\displaystyle \text{Axis of symmetry of the}\\ \text{graph of a quadratic}\\ \text{function}f(x)=ax2+bx+c axis of symmetry is x=b2a\displaystyle \displaystyle f(x) = ax^2 + bx + c \Rightarrow \text{ axis of symmetry is } x = -\frac{b}{2a}

Topic 3: Geometry and trigonometry

TopicDescriptionFormula
SL 3.1\displaystyle \text{SL 3.1}Distance between twopoints (x1,y1,z1) and (x2,y2,z2)\displaystyle \text{Distance between two}\\\text{points $(x_1, y_1, z_1)$ and $(x_2, y_2, z_2)$}d=(x1x2)2+(y1y2)2+(z1z2)2\displaystyle d = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2}
SL 3.1\displaystyle \text{SL 3.1}Coordinates of themidpoint of a line segmentwith endpoints (x1,y1,z1)and (x2,y2,z2)\displaystyle \text{Coordinates of the}\\ \text{midpoint of a line segment}\\ \text{with endpoints $(x_1, y_1, z_1)$} \\ \text{and $(x_2, y_2, z_2)$}(x1+x22,y1+y22,z1+z22)\displaystyle \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)
SL 3.1\displaystyle \text{SL 3.1}Volume of a right-pyramid\displaystyle \text{Volume of a right-pyramid}V=13Ah, where A is the area of the base, h is the height\displaystyle V = \frac{1}{3}Ah \text{, where } A \text{ is the area of the base, } h \text{ is the height}
SL 3.1\displaystyle \text{SL 3.1}Volume of a right cone\displaystyle \text{Volume of a right cone}V=13πr2h, where r is the radius, h is the height\displaystyle V = \frac{1}{3}\pi r^2h \text{, where } r \text{ is the radius, } h \text{ is the height}
SL 3.1\displaystyle \text{SL 3.1}Area of the curved surfaceof a cone\displaystyle \text{Area of the curved surface}\\\text{of a cone}A=πrl, where r is the radius, l is the slant height\displaystyle A = \pi rl \text{, where } r \text{ is the radius, } l \text{ is the slant height}
SL 3.1\displaystyle \text{SL 3.1}Volume of a sphere\displaystyle \text{Volume of a sphere}V=43πr3, where r is the radius\displaystyle V = \frac{4}{3}\pi r^3 \text{, where } r \text{ is the radius}
SL 3.1\displaystyle \text{SL 3.1}Surface area of a sphere\displaystyle \text{Surface area of a sphere}A=4πr2, where r is the radius\displaystyle A = 4\pi r^2 \text{, where } r \text{ is the radius}
SL 3.2\displaystyle \text{SL 3.2}Sine rule\displaystyle \text{Sine rule}asinA=bsinB=csinC\displaystyle \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
SL 3.2\displaystyle \text{SL 3.2}Cosine rule\displaystyle \text{Cosine rule}c2=a2+b22abcosC;  cosC=a2+b2c22ab\displaystyle c^2 = a^2 + b^2 - 2ab\cos C ; \; \cos C = \frac{a^2 + b^2 - c^2}{2ab}
SL 3.2\displaystyle \text{SL 3.2}Area of a triangle\displaystyle \text{Area of a triangle}A=12absinC\displaystyle A = \frac{1}{2}ab\sin C
SL 3.4\displaystyle \text{SL 3.4}Length of an arc\displaystyle \text{Length of an arc}l=θ360×2πr,where θ is the angle measured in degrees, r is the radius\displaystyle l = \frac{\theta}{360} \times 2\pi r, \\[1em] \text{where } \theta \text{ is the angle measured in degrees, } r \text{ is the radius}
SL 3.4\displaystyle \text{SL 3.4}Area of a sector\displaystyle \text{Area of a sector}A=θ360×πr2,where θ is the angle measured in degrees, r is the radius\displaystyle A = \frac{\theta}{360} \times \pi r^2, \\[1em] \text{where } \theta \text{ is the angle measured in degrees, } r \text{ is the radius}

Topic 4: Statistics and probability

TopicDescriptionFormula
SL 4.2\displaystyle \text{SL 4.2}Interquartile range\displaystyle \text{Interquartile range}IQR=Q3Q1\displaystyle \operatorname{IQR} = Q_3 - Q_1
SL 4.3\displaystyle \text{SL 4.3}Mean, xˉ, of a set of data\displaystyle \text{Mean, } \bar{x} \text{, of a set of data}xˉ=i=1kfixin, where n=i=1kfi\displaystyle \bar{x} = \frac{\sum\limits_{i=1}^k f_ix_i}{n}, \text{ where } n = \sum\limits_{i=1}^k f_i
SL 4.5\displaystyle \text{SL 4.5}Probability of an event A\displaystyle \text{Probability of an event } AP(A)=n(A)n(U)\displaystyle \operatorname{P}(A) = \frac{n(A)}{n(U)}
SL 4.5\displaystyle \text{SL 4.5}Complementary events\displaystyle \text{Complementary events}P(A)+P(A)=1\displaystyle \operatorname{P}(A) + \operatorname{P}(A') = 1
SL 4.6\displaystyle \text{SL 4.6}Combined events\displaystyle \text{Combined events}P(AB)=P(A)+P(B)P(AB)\displaystyle \operatorname{P}(A \cup B) = \operatorname{P}(A) + \operatorname{P}(B) - \operatorname{P}(A \cap B)
SL 4.6\displaystyle \text{SL 4.6}Mutually exclusive events\displaystyle \text{Mutually exclusive events}P(AB)=P(A)+P(B)\displaystyle \operatorname{P}(A \cup B) = \operatorname{P}(A) + \operatorname{P}(B)
SL 4.6\displaystyle \text{SL 4.6}Conditional probability\displaystyle \text{Conditional probability}P(AB)=P(AB)P(B)\displaystyle \operatorname{P}(A|B) = \frac{\operatorname{P}(A \cap B)}{\operatorname{P}(B)}
SL 4.6\displaystyle \text{SL 4.6}Independent events\displaystyle \text{Independent events}P(AB)=P(A)P(B)\displaystyle \operatorname{P}(A \cap B) = \operatorname{P}(A)\operatorname{P}(B)
SL 4.7\displaystyle \text{SL 4.7}Expected value of adiscrete random variable X\displaystyle \text{Expected value of a}\\ \text{discrete random variable } XE(X)=xP(X=x)\displaystyle \operatorname{E}(X) = \sum x\operatorname{P}(X = x)
SL 4.8\displaystyle \text{SL 4.8}Binomial distributionXB(n,p)\displaystyle \text{Binomial distribution}\\ X \sim \text{B}(n, p)E(X)=np\displaystyle \operatorname{E}(X) = np

Topic 5: Calculus

TopicDescriptionFormula
SL 5.3\displaystyle \text{SL 5.3}Derivative of xn\displaystyle \text{Derivative of } x^nf(x)=xnf(x)=nxn1\displaystyle f(x) = x^n \Rightarrow f'(x) = nx^{n-1}
SL 5.5\displaystyle \text{SL 5.5}Integral of xn\displaystyle \text{Integral of } x^nxndx=xn+1n+1+C, n1\displaystyle \int x^n \,dx = \frac{x^{n+1}}{n+1} + C, \text{ } n \neq -1
SL 5.5\displaystyle \text{SL 5.5}Area between a curvey=f(x) and the x-axis,where f(x)>0\displaystyle \text{Area between a curve}\\ \text{$y = f(x)$ and the $x$-axis,}\\ \text{where } f(x) > 0A=abydx\displaystyle A = \int_a^b y\,dx
SL 5.8\displaystyle \text{SL 5.8}The trapezoidal rule\displaystyle \text{The trapezoidal rule}abydx12h((y0+yn)+2(y1+y2+...+yn1)),where h=ban\displaystyle \int_a^b y\,dx \approx \frac{1}{2}h((y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})), \\[1em] \text{where } h = \frac{b-a}{n}