Log InSign Up

IB Mathematics

Applications and Interpretation HLFormula Booklet

Prior learning

DescriptionFormula
Area of a parallelogram\displaystyle \text{Area of a parallelogram}A=bh, where b is the base, h is the height\displaystyle A = bh, \text{ where } b \text{ is the base, } h \text{ is the height}
Area of a triangle\displaystyle \text{Area of a triangle}A=12(bh), where b is the base, h is the height\displaystyle A = \frac{1}{2}(bh), \text{ where } b \text{ is the base, } h \text{ is the height}
Area of a trapezoid\displaystyle \text{Area of a trapezoid}A=12(a+b)h, where a and b are the parallel sides, h is the height\displaystyle A = \frac{1}{2}(a+b)h, \text{ where } a \text{ and } b \text{ are the parallel sides, } h \text{ is the height}
Area of a circle\displaystyle \text{Area of a circle}A=πr2, where r is the radius\displaystyle A = \pi r^2, \text{ where } r \text{ is the radius}
Circumference of a circle\displaystyle \text{Circumference of a circle}C=2πr, where r is the radius\displaystyle C = 2\pi r, \text{ where } r \text{ is the radius}
Volume of a cuboid\displaystyle \text{Volume of a cuboid}V=lwh, where l is the length, w is the width, h is the height\displaystyle V = lwh, \text{ where } l \text{ is the length, } w \text{ is the width, } h \text{ is the height}
Volume of a cylinder\displaystyle \text{Volume of a cylinder}V=πr2h, where r is the radius, h is the height\displaystyle V = \pi r^2h, \text{ where } r \text{ is the radius, } h \text{ is the height}
Volume of a prism\displaystyle \text{Volume of a prism}V=Ah, where A is the area of cross-section, h is the height\displaystyle V = Ah, \text{ where } A \text{ is the area of cross-section, } h \text{ is the height}
Area of the curved surface ofa cylinder\displaystyle \text{Area of the curved surface of}\\ \text{a cylinder}A=2πrh, where r is the radius, h is the height\displaystyle A = 2\pi rh, \text{ where } r \text{ is the radius, } h \text{ is the height}
Distance between twopoints (x1,y1) and (x2,y2)\displaystyle \text{Distance between two}\\ \text{points $(x_1, y_1)$ and $(x_2, y_2)$}d=(x1x2)2+(y1y2)2\displaystyle d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}
Coordinates of the midpoint ofa line segment with endpoints(x1,y1) and (x2,y2)\displaystyle \text{Coordinates of the midpoint of}\\ \text{a line segment with endpoints}\\ \text{$(x_1, y_1)$ and $(x_2, y_2)$}(x1+x22,y1+y22)\displaystyle \displaystyle\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)
Solutions of a quadraticequation (HL only)\displaystyle \text{Solutions of a quadratic}\\ \text{equation (HL only)}The solutions of ax2+bx+c=0 are x=b±b24ac2a, a0\displaystyle \text{The solutions of } ax^2 + bx + c = 0 \text{ are } x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \text{ } a \neq 0

Topic 1: Number and algebra

TopicDescriptionFormula
SL 1.2\displaystyle \text{SL 1.2}The nth term of anarithmetic sequence\displaystyle \text{The $n$th term of an}\\ \text{arithmetic sequence}un=u1+(n1)d\displaystyle u_n = u_1 + (n-1)d
SL 1.2\displaystyle \text{SL 1.2}The sum of n terms of anarithmetic sequence\displaystyle \text{The sum of $n$ terms of an}\\ \text{arithmetic sequence}Sn=n2(2u1+(n1)d);  Sn=n2(u1+un)\displaystyle \displaystyle S_n = \frac{n}{2}(2u_1 + (n-1)d); \; \displaystyle S_n = \frac{n}{2}(u_1 + u_n)
SL 1.3\displaystyle \text{SL 1.3}The nth term of ageometric sequence\displaystyle \text{The $n$th term of a}\\ \text{geometric sequence}un=u1rn1\displaystyle u_n = u_1r^{n-1}
SL 1.3\displaystyle \text{SL 1.3}The sum of n terms of afinite geometric sequence\displaystyle \text{The sum of $n$ terms of a}\\ \text{finite geometric sequence}Sn=u1(rn1)r1=u1(1rn)1r,  r1\displaystyle \displaystyle S_n = \frac{u_1(r^n - 1)}{r-1} = \frac{u_1(1-r^n)}{1-r}, \; r \neq 1
SL 1.4\displaystyle \text{SL 1.4}Compound interest\displaystyle \text{Compound interest}FV=PV×(1+r100k)kn, where FV is the future value,where PV is the present value, n is the number of years,k is the number of compounding periods per year,r% is the nominal annual rate of interest\displaystyle \displaystyle FV = PV \times \left(1 + \frac{r}{100k}\right)^{kn}, \text{ where }FV\text{ is the future value,}\\[1em] \text{where }PV\text{ is the present value, }n\text{ is the number of years,}\\ \text{$k$ is the number of compounding periods per year,}\\ \text{$r\%$ is the nominal annual rate of interest}
SL 1.5\displaystyle \text{SL 1.5}Exponents and logarithms\displaystyle \text{Exponents and logarithms}ax=bx=logab, where a>0,b>0,a1\displaystyle a^x = b \Leftrightarrow x = \log_a b, \text{ where } a > 0, b > 0, a \neq 1
SL 1.6\displaystyle \text{SL 1.6}Percentage error\displaystyle \text{Percentage error}ε=vAvEvE×100%, where vE is the exact value and vA isthe approximate value of v\displaystyle \varepsilon = \left|\frac{v_A - v_E}{v_E}\right| \times 100\%, \text{ where } v_E \text{ is the exact value and } v_A \text{ is}\\[1em] \text{the approximate value of } v
AHL 1.9\displaystyle \text{AHL 1.9}Laws of logarithms\displaystyle \text{Laws of logarithms}logaxy=logax+logaylogaxy=logaxlogaylogaxm=mlogaxfor a,x,y>0\displaystyle \log_a xy = \log_a x + \log_a y \\[1em] \log_a \frac{x}{y} = \log_a x - \log_a y \\[1em] \log_a x^m = m\log_a x \\[1em] \text{for } a,x,y > 0
AHL 1.11\displaystyle \text{AHL 1.11}The sum of an infinitegeometric sequence\displaystyle \text{The sum of an infinite}\\ \text{geometric sequence}S=u11r,r<1\displaystyle S_\infty = \frac{u_1}{1-r}, \left|r\right| < 1
AHL 1.12\displaystyle \text{AHL 1.12}Complex numbers\displaystyle \text{Complex numbers}z=a+bi\displaystyle z = a + bi
AHL 1.12\displaystyle \text{AHL 1.12}Discriminant\displaystyle \text{Discriminant}Δ=b24ac\displaystyle \Delta = b^2 - 4ac
AHL 1.13\displaystyle \text{AHL 1.13}Modulus-argument (polar)and exponential (Euler)form\displaystyle \text{Modulus-argument (polar)}\\ \text{and exponential (Euler)}\\ \text{form}z=r(cosθ+isinθ)=reiθ=rcisθ\displaystyle z = r(\cos \theta + i\sin \theta) = re^{i\theta} = r\operatorname{cis} \theta
AHL 1.14\displaystyle \text{AHL 1.14}Determinant of a 2×2matrix\displaystyle \text{Determinant of a } 2\times 2\\ \text{matrix}A=(abcd)detA=A=adbc\displaystyle \mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow \det \mathbf{A} = |\mathbf{A}| = ad - bc
AHL 1.14\displaystyle \text{AHL 1.14}Inverse of a 2×2 matrix\displaystyle \text{Inverse of a } 2\times 2 \text{ matrix}A=(abcd)A1=1detA(dbca),adbc\displaystyle \mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}, ad \neq bc
AHL 1.15\displaystyle \text{AHL 1.15}Power formula for a matrix\displaystyle \text{Power formula for a matrix}Mn=PDnP1,where P is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues\displaystyle \mathbf{M}^n = \mathbf{P}\mathbf{D}^n\mathbf{P}^{-1}, \\ \text{where } \mathbf{P} \text{ is the matrix of eigenvectors and } \mathbf{D} \text{ is the diagonal matrix of eigenvalues}

Topic 2: Functions

TopicDescriptionFormula
SL 2.1\displaystyle \text{SL 2.1}Equations of a straight line\displaystyle \text{Equations of a straight line}y=mx+c;  ax+by+d=0;yy1=m(xx1)\displaystyle y = mx + c; \; ax + by + d = 0; \\ y - y_1 = m(x - x_1)
SL 2.1\displaystyle \text{SL 2.1}Gradient formula\displaystyle \text{Gradient formula}m=y2y1x2x1\displaystyle \displaystyle m = \frac{y_2 - y_1}{x_2 - x_1}
SL 2.6\displaystyle \text{SL 2.6}Axis of symmetry of thegraph of a quadraticfunction\displaystyle \text{Axis of symmetry of the}\\ \text{graph of a quadratic}\\ \text{function}f(x)=ax2+bx+c axis of symmetry is x=b2a\displaystyle \displaystyle f(x) = ax^2 + bx + c \Rightarrow \text{ axis of symmetry is } x = -\frac{b}{2a}
AHL 2.9\displaystyle \text{AHL 2.9}Logistic function\displaystyle \text{Logistic function}f(x)=L1+Cekx, L,k,C>0\displaystyle f(x) = \frac{L}{1 + Ce^{-kx}}, \text{ } L, k, C > 0

Topic 3: Geometry and trigonometry

TopicDescriptionFormula
SL 3.1\displaystyle \text{SL 3.1}Distance between twopoints (x1,y1,z1) and (x2,y2,z2)\displaystyle \text{Distance between two}\\\text{points $(x_1, y_1, z_1)$ and $(x_2, y_2, z_2)$}d=(x1x2)2+(y1y2)2+(z1z2)2\displaystyle d = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2}
SL 3.1\displaystyle \text{SL 3.1}Coordinates of themidpoint of a line segmentwith endpoints (x1,y1,z1)and (x2,y2,z2)\displaystyle \text{Coordinates of the}\\ \text{midpoint of a line segment}\\ \text{with endpoints $(x_1, y_1, z_1)$} \\ \text{and $(x_2, y_2, z_2)$}(x1+x22,y1+y22,z1+z22)\displaystyle \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)
SL 3.1\displaystyle \text{SL 3.1}Volume of a right-pyramid\displaystyle \text{Volume of a right-pyramid}V=13Ah, where A is the area of the base, h is the height\displaystyle V = \frac{1}{3}Ah \text{, where } A \text{ is the area of the base, } h \text{ is the height}
SL 3.1\displaystyle \text{SL 3.1}Volume of a right cone\displaystyle \text{Volume of a right cone}V=13πr2h, where r is the radius, h is the height\displaystyle V = \frac{1}{3}\pi r^2h \text{, where } r \text{ is the radius, } h \text{ is the height}
SL 3.1\displaystyle \text{SL 3.1}Area of the curved surfaceof a cone\displaystyle \text{Area of the curved surface}\\\text{of a cone}A=πrl, where r is the radius, l is the slant height\displaystyle A = \pi rl \text{, where } r \text{ is the radius, } l \text{ is the slant height}
SL 3.1\displaystyle \text{SL 3.1}Volume of a sphere\displaystyle \text{Volume of a sphere}V=43πr3, where r is the radius\displaystyle V = \frac{4}{3}\pi r^3 \text{, where } r \text{ is the radius}
SL 3.1\displaystyle \text{SL 3.1}Surface area of a sphere\displaystyle \text{Surface area of a sphere}A=4πr2, where r is the radius\displaystyle A = 4\pi r^2 \text{, where } r \text{ is the radius}
SL 3.2\displaystyle \text{SL 3.2}Sine rule\displaystyle \text{Sine rule}asinA=bsinB=csinC\displaystyle \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
SL 3.2\displaystyle \text{SL 3.2}Cosine rule\displaystyle \text{Cosine rule}c2=a2+b22abcosC;  cosC=a2+b2c22ab\displaystyle c^2 = a^2 + b^2 - 2ab\cos C ; \; \cos C = \frac{a^2 + b^2 - c^2}{2ab}
SL 3.2\displaystyle \text{SL 3.2}Area of a triangle\displaystyle \text{Area of a triangle}A=12absinC\displaystyle A = \frac{1}{2}ab\sin C
SL 3.4\displaystyle \text{SL 3.4}Length of an arc\displaystyle \text{Length of an arc}l=θ360×2πr,where θ is the angle measured in degrees, r is the radius\displaystyle l = \frac{\theta}{360} \times 2\pi r, \\[1em] \text{where } \theta \text{ is the angle measured in degrees, } r \text{ is the radius}
SL 3.4\displaystyle \text{SL 3.4}Area of a sector\displaystyle \text{Area of a sector}A=θ360×πr2,where θ is the angle measured in degrees, r is the radius\displaystyle A = \frac{\theta}{360} \times \pi r^2, \\[1em] \text{where } \theta \text{ is the angle measured in degrees, } r \text{ is the radius}
AHL 3.7\displaystyle \text{AHL 3.7}Length of an arc\displaystyle \text{Length of an arc}l=rθ, where r is the radius, θ is the angle measured in radians\displaystyle l = r\theta, \text{ where } r \text{ is the radius, } \theta \text{ is the angle measured in radians}
AHL 3.7\displaystyle \text{AHL 3.7}Area of a sector\displaystyle \text{Area of a sector}A=12r2θ, where r is the radius, θ is the angle measured inradians\displaystyle A = \frac{1}{2}r^2\theta, \text{ where } r \text{ is the radius, } \theta \text{ is the angle measured in}\\ \text{radians}
AHL 3.8\displaystyle \text{AHL 3.8}Identities\displaystyle \text{Identities}cos2θ+sin2θ=1tanθ=sinθcosθ\displaystyle \cos^2 \theta + \sin^2 \theta = 1 \\[1em] \tan \theta = \frac{\sin \theta}{\cos \theta}
AHL 3.9\displaystyle \text{AHL 3.9}Transformation matrices\displaystyle \text{Transformation matrices}(cos2θsin2θsin2θcos2θ), reflection in the line y=(tanθ)x(k001), horizontal stretch / stretch parallel to x-axis with a scalefactor of k(100k), vertical stretch / stretch parallel to y-axis with a scalefactor of k(k00k), enlargement, with a scale factor of k, centre (0,0)(cosθsinθsinθcosθ), anticlockwise/counter-clockwise rotation ofangle θ about the origin (θ>0)(cosθsinθsinθcosθ), clockwise rotation of angle θ about the origin(θ>0)\displaystyle \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}, \text{ reflection in the line } y = (\tan \theta)x \\[1em] \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}, \text{ horizontal stretch / stretch parallel to $x$-axis with a scale}\\ \text{factor of } k \\[1em] \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}, \text{ vertical stretch / stretch parallel to $y$-axis with a scale}\\ \text{factor of } k \\[1em] \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}, \text{ enlargement, with a scale factor of } k, \text{ centre } (0, 0) \\[1em] \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \text{ anticlockwise/counter-clockwise rotation of}\\ \text{angle } \theta \text{ about the origin } (\theta > 0) \\[1em] \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \text{ clockwise rotation of angle } \theta \text{ about the origin}\\ (\theta > 0)
AHL 3.10\displaystyle \text{AHL 3.10}Magnitude of a vector\displaystyle \text{Magnitude of a vector}v=v12+v22+v32, where v=(v1v2v3)\displaystyle \|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}, \text{ where } \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}
AHL 3.11\displaystyle \text{AHL 3.11}Vector equation of a line\displaystyle \text{Vector equation of a line}r=a+λb\displaystyle \mathbf{r} = \mathbf{a} + \lambda\mathbf{b}
AHL 3.11\displaystyle \text{AHL 3.11}Parametric form of theequation of a line\displaystyle \text{Parametric form of the}\\ \text{equation of a line}x=x0+λl,  y=y0+λm,  z=z0+λn\displaystyle x = x_0 + \lambda l, \; y = y_0 + \lambda m, \; z = z_0 + \lambda n
AHL 3.13\displaystyle \text{AHL 3.13}Scalar product\displaystyle \text{Scalar product}vw=v1w1+v2w2+v3w3, where v=(v1v2v3),w=(w1w2w3)vw=vwcosθ, where θ is the angle between v and w\displaystyle \mathbf{v} \cdot \mathbf{w} = v_1w_1 + v_2w_2 + v_3w_3, \text{ where } \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}\\[1em] \mathbf{v} \cdot \mathbf{w} = |\mathbf{v}||\mathbf{w}|\cos \theta, \text{ where } \theta \text{ is the angle between } \mathbf{v} \text{ and } \mathbf{w}
AHL 3.13\displaystyle \text{AHL 3.13}Angle between twovectors\displaystyle \text{Angle between two}\\ \text{vectors}cosθ=v1w1+v2w2+v3w3vw\displaystyle \cos \theta = \frac{v_1w_1 + v_2w_2 + v_3w_3}{|\mathbf{v}||\mathbf{w}|}
AHL 3.13\displaystyle \text{AHL 3.13}Vector product\displaystyle \text{Vector product}v×w=(v2w3v3w2v3w1v1w3v1w2v2w1), where v=(v1v2v3),w=(w1w2w3)v×w=vwsinθ, where θ is the angle between v and w\displaystyle \mathbf{v} \times \mathbf{w} = \begin{pmatrix} v_2w_3 - v_3w_2 \\ v_3w_1 - v_1w_3 \\ v_1w_2 - v_2w_1 \end{pmatrix}, \text{ where } \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}\\[2em] |\mathbf{v} \times \mathbf{w}| = |\mathbf{v}||\mathbf{w}|\sin \theta, \text{ where } \theta \text{ is the angle between } \mathbf{v} \text{ and } \mathbf{w}
AHL 3.13\displaystyle \text{AHL 3.13}Area of a parallelogram\displaystyle \text{Area of a parallelogram}A=v×w where v and w form two adjacent sides of aparallelogram\displaystyle A = |\mathbf{v} \times \mathbf{w}| \text{ where } \mathbf{v} \text{ and } \mathbf{w} \text{ form two adjacent sides of a}\\ \text{parallelogram}

Topic 4: Statistics and probability

TopicDescriptionFormula
SL 4.2\displaystyle \text{SL 4.2}Interquartile range\displaystyle \text{Interquartile range}IQR=Q3Q1\displaystyle \operatorname{IQR} = Q_3 - Q_1
SL 4.3\displaystyle \text{SL 4.3}Mean, xˉ, of a set of data\displaystyle \text{Mean, } \bar{x} \text{, of a set of data}xˉ=i=1kfixin, where n=i=1kfi\displaystyle \bar{x} = \frac{\sum\limits_{i=1}^k f_ix_i}{n}, \text{ where } n = \sum\limits_{i=1}^k f_i
SL 4.5\displaystyle \text{SL 4.5}Probability of an event A\displaystyle \text{Probability of an event } AP(A)=n(A)n(U)\displaystyle \operatorname{P}(A) = \frac{n(A)}{n(U)}
SL 4.5\displaystyle \text{SL 4.5}Complementary events\displaystyle \text{Complementary events}P(A)+P(A)=1\displaystyle \operatorname{P}(A) + \operatorname{P}(A') = 1
SL 4.6\displaystyle \text{SL 4.6}Combined events\displaystyle \text{Combined events}P(AB)=P(A)+P(B)P(AB)\displaystyle \operatorname{P}(A \cup B) = \operatorname{P}(A) + \operatorname{P}(B) - \operatorname{P}(A \cap B)
SL 4.6\displaystyle \text{SL 4.6}Mutually exclusive events\displaystyle \text{Mutually exclusive events}P(AB)=P(A)+P(B)\displaystyle \operatorname{P}(A \cup B) = \operatorname{P}(A) + \operatorname{P}(B)
SL 4.6\displaystyle \text{SL 4.6}Conditional probability\displaystyle \text{Conditional probability}P(AB)=P(AB)P(B)\displaystyle \operatorname{P}(A|B) = \frac{\operatorname{P}(A \cap B)}{\operatorname{P}(B)}
SL 4.6\displaystyle \text{SL 4.6}Independent events\displaystyle \text{Independent events}P(AB)=P(A)P(B)\displaystyle \operatorname{P}(A \cap B) = \operatorname{P}(A)\operatorname{P}(B)
SL 4.7\displaystyle \text{SL 4.7}Expected value of adiscrete random variable X\displaystyle \text{Expected value of a}\\ \text{discrete random variable } XE(X)=xP(X=x)\displaystyle \operatorname{E}(X) = \sum x\operatorname{P}(X = x)
SL 4.8\displaystyle \text{SL 4.8}Binomial distributionXB(n,p)\displaystyle \text{Binomial distribution}\\ X \sim \text{B}(n, p)E(X)=np\displaystyle \operatorname{E}(X) = np
AHL 4.14\displaystyle \text{AHL 4.14}Linear transformation of asingle random variable\displaystyle \text{Linear transformation of a}\\ \text{single random variable}E(aX+b)=aE(X)+bVar(aX+b)=a2Var(X)\displaystyle \operatorname{E}(aX + b) = a\operatorname{E}(X) + b \\[1em] \operatorname{Var}(aX + b) = a^2\operatorname{Var}(X)
AHL 4.14\displaystyle \text{AHL 4.14}Linear combinations of nindependent randomvariables, X1,X2,...,Xn\displaystyle \text{Linear combinations of $n$}\\ \text{independent random}\\ \text{variables, } X_1, X_2, ..., X_nE(a1X1±a2X2±...±anXn)=a1E(X1)±a2E(X2)±...±anE(Xn)Var(a1X1±a2X2±...±anXn)=a12Var(X1)+a22Var(X2)+...+an2Var(Xn)\displaystyle \operatorname{E}(a_1X_1 \pm a_2X_2 \pm ... \pm a_nX_n) = a_1\operatorname{E}(X_1) \pm a_2\operatorname{E}(X_2) \pm ... \pm a_n\operatorname{E}(X_n) \\[1em] \operatorname{Var}(a_1X_1 \pm a_2X_2 \pm ... \pm a_nX_n)\\ \quad = a_1^2\operatorname{Var}(X_1) + a_2^2\operatorname{Var}(X_2) + ... + a_n^2\operatorname{Var}(X_n)
AHL 4.14\displaystyle \text{AHL 4.14}Sample statisticsUnbiased estimate ofpopulation variance sn12\displaystyle \text{Sample statistics}\\ \text{Unbiased estimate of}\\ \text{population variance } s_{n-1}^2sn12=nn1sn2\displaystyle s_{n-1}^2 = \frac{n}{n-1}s_n^2
AHL 4.17\displaystyle \text{AHL 4.17}Poisson distributionXPo(m)MeanVariance\displaystyle \text{Poisson distribution}\\ X \sim \operatorname{Po}(m)\\[1em] \text{Mean}\\[1em] \text{Variance}E(X)=mVar(X)=m\displaystyle \\[4em] \operatorname{E}(X) = m \\[1em] \operatorname{Var}(X) = m
AHL 4.19\displaystyle \text{AHL 4.19}Transition matrices\displaystyle \text{Transition matrices}Tns0=sn, where s0 is the initial state\displaystyle \mathbf{T}^n\mathbf{s}_0 = \mathbf{s}_n, \text{ where } \mathbf{s}_0 \text{ is the initial state}

Topic 5: Calculus

TopicDescriptionFormula
SL 5.3\displaystyle \text{SL 5.3}Derivative of xn\displaystyle \text{Derivative of } x^nf(x)=xnf(x)=nxn1\displaystyle f(x) = x^n \Rightarrow f'(x) = nx^{n-1}
SL 5.5\displaystyle \text{SL 5.5}Integral of xn\displaystyle \text{Integral of } x^nxndx=xn+1n+1+C, n1\displaystyle \int x^n \,dx = \frac{x^{n+1}}{n+1} + C, \text{ } n \neq -1
SL 5.5\displaystyle \text{SL 5.5}Area between a curvey=f(x) and the x-axis,where f(x)>0\displaystyle \text{Area between a curve}\\ \text{$y = f(x)$ and the $x$-axis,}\\ \text{where } f(x) > 0A=abydx\displaystyle A = \int_a^b y\,dx
SL 5.8\displaystyle \text{SL 5.8}The trapezoidal rule\displaystyle \text{The trapezoidal rule}abydx12h((y0+yn)+2(y1+y2+...+yn1)),where h=ban\displaystyle \int_a^b y\,dx \approx \frac{1}{2}h((y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})), \\[1em] \text{where } h = \frac{b-a}{n}
AHL 5.9\displaystyle \text{AHL 5.9}Derivative of sinx\displaystyle \text{Derivative of } \sin xf(x)=sinxf(x)=cosx\displaystyle f(x) = \sin x \Rightarrow f'(x) = \cos x
AHL 5.9\displaystyle \text{AHL 5.9}Derivative of cosx\displaystyle \text{Derivative of } \cos xf(x)=cosxf(x)=sinx\displaystyle f(x) = \cos x \Rightarrow f'(x) = -\sin x
AHL 5.9\displaystyle \text{AHL 5.9}Derivative of tanx\displaystyle \text{Derivative of } \tan xf(x)=tanxf(x)=1cos2x\displaystyle f(x) = \tan x \Rightarrow f'(x) = \frac{1}{\cos^2 x}
AHL 5.9\displaystyle \text{AHL 5.9}Derivative of ex\displaystyle \text{Derivative of } e^xf(x)=exf(x)=ex\displaystyle f(x) = e^x \Rightarrow f'(x) = e^x
AHL 5.9\displaystyle \text{AHL 5.9}Derivative of lnx\displaystyle \text{Derivative of } \ln xf(x)=lnxf(x)=1x\displaystyle f(x) = \ln x \Rightarrow f'(x) = \frac{1}{x}
AHL 5.9\displaystyle \text{AHL 5.9}Chain rule\displaystyle \text{Chain rule}y=g(u), where u=f(x)dydx=dydu×dudx\displaystyle y = g(u), \text{ where } u = f(x) \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x}
AHL 5.9\displaystyle \text{AHL 5.9}Product rule\displaystyle \text{Product rule}y=uvdydx=udvdx+vdudx\displaystyle y = uv \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}
AHL 5.9\displaystyle \text{AHL 5.9}Quotient rule\displaystyle \text{Quotient rule}y=uvdydx=vdudxudvdxv2\displaystyle y = \frac{u}{v} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}
AHL 5.11\displaystyle \text{AHL 5.11}Standard integrals\displaystyle \text{Standard integrals}1xdx=lnx+Csinxdx=cosx+Ccosxdx=sinx+C1cos2xdx=tanx+Cexdx=ex+C\displaystyle \int \frac{1}{x}\,\mathrm{d}x = \ln|x| + C \\[1em] \int \sin x\,\mathrm{d}x = -\cos x + C \\[1em] \int \cos x\,\mathrm{d}x = \sin x + C \\[1em] \int \frac{1}{\cos^2 x}\,\mathrm{d}x = \tan x + C \\[1em] \int e^x\,\mathrm{d}x = e^x + C
AHL 5.12\displaystyle \text{AHL 5.12}Area of region enclosedby a curve and x or y-axes\displaystyle \text{Area of region enclosed}\\ \text{by a curve and $x$ or $y$-axes}A=abydx or A=abxdy\displaystyle A = \int_a^b |y|\,\mathrm{d}x \text{ or } A = \int_a^b |x|\,\mathrm{d}y
AHL 5.12\displaystyle \text{AHL 5.12}Volume of revolutionabout x or y-axes\displaystyle \text{Volume of revolution}\\ \text{about $x$ or $y$-axes}V=abπy2dx or V=abπx2dy\displaystyle V = \int_a^b \pi y^2\,\mathrm{d}x \text{ or } V = \int_a^b \pi x^2\,\mathrm{d}y
AHL 5.13\displaystyle \text{AHL 5.13}Acceleration\displaystyle \text{Acceleration}a=dvdt=d2sdt2=vdvds\displaystyle a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2s}{\mathrm{d}t^2} = v\frac{\mathrm{d}v}{\mathrm{d}s}
AHL 5.13\displaystyle \text{AHL 5.13}Distance travelled fromt1 to t2\displaystyle \text{Distance travelled from}\\ t_1 \text{ to } t_2distance=t1t2v(t)dt\displaystyle \text{distance} = \int_{t_1}^{t_2} |v(t)|\,\mathrm{d}t
AHL 5.13\displaystyle \text{AHL 5.13}Displacement fromt1 to t2\displaystyle \text{Displacement from}\\ t_1 \text{ to } t_2displacement=t1t2v(t)dt\displaystyle \text{displacement} = \int_{t_1}^{t_2} v(t)\,\mathrm{d}t
AHL 5.16\displaystyle \text{AHL 5.16}Euler’s method\displaystyle \text{Euler's method}yn+1=yn+h×f(xn,yn);  xn+1=xn+h, where h is a constant(step length)\displaystyle y_{n+1} = y_n + h \times f(x_n, y_n); \; x_{n+1} = x_n + h, \text{ where $h$ is a constant}\\ \text{(step length)}
AHL 5.16\displaystyle \text{AHL 5.16}Euler’s method forcoupled systems\displaystyle \text{Euler's method for}\\ \text{coupled systems}xn+1=xn+h×f1(xn,yn,tn)yn+1=yn+h×f2(xn,yn,tn)tn+1=tn+hwhere h is a constant (step length)\displaystyle x_{n+1} = x_n + h \times f_1(x_n, y_n, t_n) \\[1em] y_{n+1} = y_n + h \times f_2(x_n, y_n, t_n) \\[1em] t_{n+1} = t_n + h \\[1em] \text{where } h \text{ is a constant (step length)}
AHL 5.17\displaystyle \text{AHL 5.17}Exact solution for coupledlinear differential equations\displaystyle \text{Exact solution for coupled}\\ \text{linear differential equations}x=Aeλ1tp1+Beλ2tp2\displaystyle \mathbf{x} = Ae^{\lambda_1 t}\mathbf{p}_1 + Be^{\lambda_2 t}\mathbf{p}_2