SL 3.1 \displaystyle \text{SL 3.1} SL 3.1 Distance between two points ( x 1 , y 1 , z 1 ) and ( x 2 , y 2 , z 2 ) \displaystyle \text{Distance between two}\\\text{points $(x_1, y_1, z_1)$ and $(x_2, y_2, z_2)$} Distance between two points ( x 1 , y 1 , z 1 ) and ( x 2 , y 2 , z 2 ) d = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 + ( z 1 − z 2 ) 2 \displaystyle d = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2} d = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 + ( z 1 − z 2 ) 2 SL 3.1 \displaystyle \text{SL 3.1} SL 3.1 Coordinates of the midpoint of a line segment with endpoints ( x 1 , y 1 , z 1 ) and ( x 2 , y 2 , z 2 ) \displaystyle \text{Coordinates of the}\\ \text{midpoint of a line segment}\\ \text{with endpoints $(x_1, y_1, z_1)$} \\ \text{and $(x_2, y_2, z_2)$} Coordinates of the midpoint of a line segment with endpoints ( x 1 , y 1 , z 1 ) and ( x 2 , y 2 , z 2 ) ( x 1 + x 2 2 , y 1 + y 2 2 , z 1 + z 2 2 ) \displaystyle \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right) ( 2 x 1 + x 2 , 2 y 1 + y 2 , 2 z 1 + z 2 ) SL 3.1 \displaystyle \text{SL 3.1} SL 3.1 Volume of a right-pyramid \displaystyle \text{Volume of a right-pyramid} Volume of a right-pyramid V = 1 3 A h , where A is the area of the base, h is the height \displaystyle V = \frac{1}{3}Ah \text{, where } A \text{ is the area of the base, } h \text{ is the height} V = 3 1 A h , where A is the area of the base, h is the height SL 3.1 \displaystyle \text{SL 3.1} SL 3.1 Volume of a right cone \displaystyle \text{Volume of a right cone} Volume of a right cone V = 1 3 π r 2 h , where r is the radius, h is the height \displaystyle V = \frac{1}{3}\pi r^2h \text{, where } r \text{ is the radius, } h \text{ is the height} V = 3 1 π r 2 h , where r is the radius, h is the height SL 3.1 \displaystyle \text{SL 3.1} SL 3.1 Area of the curved surface of a cone \displaystyle \text{Area of the curved surface}\\\text{of a cone} Area of the curved surface of a cone A = π r l , where r is the radius, l is the slant height \displaystyle A = \pi rl \text{, where } r \text{ is the radius, } l \text{ is the slant height} A = π r l , where r is the radius, l is the slant height SL 3.1 \displaystyle \text{SL 3.1} SL 3.1 Volume of a sphere \displaystyle \text{Volume of a sphere} Volume of a sphere V = 4 3 π r 3 , where r is the radius \displaystyle V = \frac{4}{3}\pi r^3 \text{, where } r \text{ is the radius} V = 3 4 π r 3 , where r is the radius SL 3.1 \displaystyle \text{SL 3.1} SL 3.1 Surface area of a sphere \displaystyle \text{Surface area of a sphere} Surface area of a sphere A = 4 π r 2 , where r is the radius \displaystyle A = 4\pi r^2 \text{, where } r \text{ is the radius} A = 4 π r 2 , where r is the radius SL 3.2 \displaystyle \text{SL 3.2} SL 3.2 Sine rule \displaystyle \text{Sine rule} Sine rule a sin A = b sin B = c sin C \displaystyle \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} sin A a = sin B b = sin C c SL 3.2 \displaystyle \text{SL 3.2} SL 3.2 Cosine rule \displaystyle \text{Cosine rule} Cosine rule c 2 = a 2 + b 2 − 2 a b cos C ; cos C = a 2 + b 2 − c 2 2 a b \displaystyle c^2 = a^2 + b^2 - 2ab\cos C ; \; \cos C = \frac{a^2 + b^2 - c^2}{2ab} c 2 = a 2 + b 2 − 2 ab cos C ; cos C = 2 ab a 2 + b 2 − c 2 SL 3.2 \displaystyle \text{SL 3.2} SL 3.2 Area of a triangle \displaystyle \text{Area of a triangle} Area of a triangle A = 1 2 a b sin C \displaystyle A = \frac{1}{2}ab\sin C A = 2 1 ab sin C SL 3.4 \displaystyle \text{SL 3.4} SL 3.4 Length of an arc \displaystyle \text{Length of an arc} Length of an arc l = r θ where r is the radius, θ is the angle measured in radians \displaystyle l = r\theta\\ \text{where } r \text{ is the radius, } \theta \text{ is the angle measured in radians} l = r θ where r is the radius, θ is the angle measured in radians SL 3.4 \displaystyle \text{SL 3.4} SL 3.4 Area of a sector \displaystyle \text{Area of a sector} Area of a sector A = 1 2 r 2 θ where r is the radius, θ is the angle measured in radians \displaystyle \displaystyle A = \frac{1}{2}r^2\theta\\ \text{where } r \text{ is the radius, } \theta \text{ is the angle measured in radians} A = 2 1 r 2 θ where r is the radius, θ is the angle measured in radians SL 3.5 \displaystyle \text{SL 3.5} SL 3.5 Identity for tan θ \displaystyle \text{Identity for } \tan \theta Identity for tan θ tan θ = sin θ cos θ \displaystyle \tan \theta = \frac{\sin \theta}{\cos \theta} tan θ = cos θ sin θ SL 3.6 \displaystyle \text{SL 3.6} SL 3.6 Pythagorean identity \displaystyle \text{Pythagorean identity} Pythagorean identity cos 2 θ + sin 2 θ = 1 \displaystyle \cos^2 \theta + \sin^2 \theta = 1 cos 2 θ + sin 2 θ = 1 SL 3.6 \displaystyle \text{SL 3.6} SL 3.6 Double angle identities \displaystyle \text{Double angle identities} Double angle identities sin 2 θ = 2 sin θ cos θ cos 2 θ = cos 2 θ − sin 2 θ = 2 cos 2 θ − 1 = 1 − 2 sin 2 θ \displaystyle \sin 2\theta = 2\sin \theta \cos \theta\\[1em] \cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta sin 2 θ = 2 sin θ cos θ cos 2 θ = cos 2 θ − sin 2 θ = 2 cos 2 θ − 1 = 1 − 2 sin 2 θ AHL 3.9 \displaystyle \text{AHL 3.9} AHL 3.9 Reciprocal trigonometric identities \displaystyle \text{Reciprocal trigonometric}\\ \text{identities} Reciprocal trigonometric identities sec θ = 1 cos θ cosec θ = 1 sin θ \displaystyle \sec \theta = \frac{1}{\cos \theta}\\[1em] \cosec \theta = \frac{1}{\sin \theta} sec θ = cos θ 1 cosec θ = sin θ 1 AHL 3.9 \displaystyle \text{AHL 3.9} AHL 3.9 Pythagorean identities \displaystyle \text{Pythagorean identities} Pythagorean identities 1 + tan 2 θ = sec 2 θ 1 + cot 2 θ = cosec 2 θ \displaystyle 1 + \tan^2 \theta = \sec^2 \theta\\[1em] 1 + \cot^2 \theta = \cosec^2 \theta 1 + tan 2 θ = sec 2 θ 1 + cot 2 θ = cosec 2 θ AHL 3.10 \displaystyle \text{AHL 3.10} AHL 3.10 Compound angle identities \displaystyle \text{Compound angle identities} Compound angle identities sin ( A ± B ) = sin A cos B ± cos A sin B cos ( A ± B ) = cos A cos B ∓ sin A sin B tan ( A ± B ) = tan A ± tan B 1 ∓ tan A tan B \displaystyle \sin(A \pm B) = \sin A\cos B \pm \cos A\sin B\\[1em] \cos(A \pm B) = \cos A\cos B \mp \sin A\sin B\\[1em] \tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A\tan B} sin ( A ± B ) = sin A cos B ± cos A sin B cos ( A ± B ) = cos A cos B ∓ sin A sin B tan ( A ± B ) = 1 ∓ tan A tan B tan A ± tan B AHL 3.10 \displaystyle \text{AHL 3.10} AHL 3.10 Double angle identity for tan \displaystyle \text{Double angle identity}\\ \text{for }\tan Double angle identity for tan tan 2 θ = 2 tan θ 1 − tan 2 θ \displaystyle \tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta} tan 2 θ = 1 − tan 2 θ 2 tan θ AHL 3.12 \displaystyle \text{AHL 3.12} AHL 3.12 Magnitude of a vector \displaystyle \text{Magnitude of a vector} Magnitude of a vector ∣ v ∣ = v 1 2 + v 2 2 + v 3 2 , where v = ( v 1 v 2 v 3 ) \displaystyle |\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}, \text{ where } \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} ∣ v ∣ = v 1 2 + v 2 2 + v 3 2 , where v = v 1 v 2 v 3 AHL 3.13 \displaystyle \text{AHL 3.13} AHL 3.13 Scalar product \displaystyle \text{Scalar product} Scalar product v ⋅ w = v 1 w 1 + v 2 w 2 + v 3 w 3 , where v = ( v 1 v 2 v 3 ) , w = ( w 1 w 2 w 3 ) v ⋅ w = ∣ v ∣ ∣ w ∣ cos θ , where θ is the angle between v and w \displaystyle \mathbf{v} \cdot \mathbf{w} = v_1w_1 + v_2w_2 + v_3w_3, \text{ where } \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}\\[1em] \mathbf{v} \cdot \mathbf{w} = |\mathbf{v}||\mathbf{w}|\cos \theta, \text{ where } \theta \text{ is the angle between } \mathbf{v} \text{ and } \mathbf{w} v ⋅ w = v 1 w 1 + v 2 w 2 + v 3 w 3 , where v = v 1 v 2 v 3 , w = w 1 w 2 w 3 v ⋅ w = ∣ v ∣∣ w ∣ cos θ , where θ is the angle between v and w AHL 3.13 \displaystyle \text{AHL 3.13} AHL 3.13 Angle between two vectors \displaystyle \text{Angle between two}\\ \text{vectors} Angle between two vectors cos θ = v 1 w 1 + v 2 w 2 + v 3 w 3 ∣ v ∣ ∣ w ∣ \displaystyle \cos \theta = \frac{v_1w_1 + v_2w_2 + v_3w_3}{|\mathbf{v}||\mathbf{w}|} cos θ = ∣ v ∣∣ w ∣ v 1 w 1 + v 2 w 2 + v 3 w 3 AHL 3.14 \displaystyle \text{AHL 3.14} AHL 3.14 Vector equation of a line \displaystyle \text{Vector equation of a line} Vector equation of a line r = a + λ b \displaystyle \mathbf{r} = \mathbf{a} + \lambda\mathbf{b} r = a + λ b AHL 3.14 \displaystyle \text{AHL 3.14} AHL 3.14 Parametric form of the equation of a line \displaystyle \text{Parametric form of the}\\ \text{equation of a line} Parametric form of the equation of a line x = x 0 + λ l , y = y 0 + λ m , z = z 0 + λ n \displaystyle x = x_0 + \lambda l, \text{ } y = y_0 + \lambda m, \text{ } z = z_0 + \lambda n x = x 0 + λ l , y = y 0 + λm , z = z 0 + λn AHL 3.14 \displaystyle \text{AHL 3.14} AHL 3.14 Cartesian equations of a line \displaystyle \text{Cartesian equations of a}\\ \text{line} Cartesian equations of a line x − x 0 l = y − y 0 m = z − z 0 n \displaystyle \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n} l x − x 0 = m y − y 0 = n z − z 0 AHL 3.16 \displaystyle \text{AHL 3.16} AHL 3.16 Vector product \displaystyle \text{Vector product} Vector product v × w = ( v 2 w 3 − v 3 w 2 v 3 w 1 − v 1 w 3 v 1 w 2 − v 2 w 1 ) , where v = ( v 1 v 2 v 3 ) , w = ( w 1 w 2 w 3 ) ∣ v × w ∣ = ∣ v ∣ ∣ w ∣ sin θ , where θ is the angle between v and w \displaystyle \mathbf{v} \times \mathbf{w} = \begin{pmatrix} v_2w_3 - v_3w_2 \\ v_3w_1 - v_1w_3 \\ v_1w_2 - v_2w_1 \end{pmatrix}, \text{ where } \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}\\[2em] |\mathbf{v} \times \mathbf{w}| = |\mathbf{v}||\mathbf{w}|\sin \theta, \text{ where } \theta \text{ is the angle between } \mathbf{v} \text{ and } \mathbf{w} v × w = v 2 w 3 − v 3 w 2 v 3 w 1 − v 1 w 3 v 1 w 2 − v 2 w 1 , where v = v 1 v 2 v 3 , w = w 1 w 2 w 3 ∣ v × w ∣ = ∣ v ∣∣ w ∣ sin θ , where θ is the angle between v and w AHL 3.16 \displaystyle \text{AHL 3.16} AHL 3.16 Area of a parallelogram \displaystyle \text{Area of a parallelogram} Area of a parallelogram A = ∣ v × w ∣ where v and w form two adjacent sides of a parallelogram \displaystyle A = |\mathbf{v} \times \mathbf{w}| \text{ where } \mathbf{v} \text{ and } \mathbf{w} \text{ form two adjacent sides of a}\\ \text{parallelogram} A = ∣ v × w ∣ where v and w form two adjacent sides of a parallelogram AHL 3.17 \displaystyle \text{AHL 3.17} AHL 3.17 Vector equation of a plane \displaystyle \text{Vector equation of a plane} Vector equation of a plane r = a + λ b + μ c \displaystyle \mathbf{r} = \mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{c} r = a + λ b + μ c AHL 3.17 \displaystyle \text{AHL 3.17} AHL 3.17 Equation of a plane (using the normal vector) \displaystyle \text{Equation of a plane}\\ \text{(using the normal vector)} Equation of a plane (using the normal vector) r ⋅ n = a ⋅ n \displaystyle \mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n} r ⋅ n = a ⋅ n AHL 3.17 \displaystyle \text{AHL 3.17} AHL 3.17 Cartesian equation of a plane \displaystyle \text{Cartesian equation of a}\\ \text{plane} Cartesian equation of a plane a x + b y + c z = d \displaystyle ax + by + cz = d a x + b y + cz = d