HSC
Mathematics Extension 2Formula Sheet
Measurement
Length
l=360θ×2πr
Area
A=360θ×πr2
A=2h(a+b)
Surface area
A=2πr2+2πrh
A=4πr2
Volume
V=31Ah
V=34πr3
Functions
x=2a−b±b2−4ac
For ax3+bx2+cx+dα+β+γαβ+αγ+βγandαβγ=0:=−ab=ac=−ad
Relations
(x−h)2+(y−k)2=r2
Trigonometric Functions
sinA=hypopp,cosA=hypadj,tanA=adjopp
A=21absinC
sinAa=sinBb=sinCc
c2=a2+b2−2abcosC
cosC=2aba2+b2−c2
l=rθ
A=21r2θ
Isoceles triangle
Special right-angled triangle
Trigonometric identities
secA=cosA1,cosA=0
cosecA=sinA1,sinA=0
cotA=sinAcosA,sinA=0
cos2x+sin2x=1
Compound angles
sin(A+B)=sinAcosB+cosAsinB
cos(A+B)=cosAcosB−sinAsinB
tan(A+B)=1−tanAtanBtanA+tanB
If t=tan2A then: sinAcosAtanA=1+t22t=1+t21−t2=1−t22t
cosAcosB=21[cos(A−B)+cos(A+B)]
sinAsinB=21[cos(A−B)−cos(A+B)]
sinAcosB=21[sin(A+B)+sin(A−B)]
cosAsinB=21[sin(A+B)−sin(A−B)]
sin2nx=21(1−cos2nx)
cos2nx=21(1+cos2nx)
Differential Calculus
Function | Derivative |
---|---|
y=f(x)n | dxdy=nf′(x)[f(x)]n−1 |
y=uv | dxdy=udxdv+vdxdu |
y=g(u) where u=f(x) | dxdy=dudy×dxdu |
y=vu | dxdy=v2vdxdu−udxdv |
y=sinf(x) | dxdy=f′(x)cosf(x) |
y=cosf(x) | dxdy=−f′(x)sinf(x) |
y=tanf(x) | dxdy=f′(x)sec2f(x) |
y=ef(x) | dxdy=f′(x)ef(x) |
y=lnf(x) | dxdy=f(x)f′(x) |
y=af(x) | dxdy=(lna)f′(x)af(x) |
y=logaf(x) | dxdy=(lna)f(x)f′(x) |
y=sin−1f(x) | dxdy=1−[f(x)]2f′(x) |
y=cos−1f(x) | dxdy=−1−[f(x)]2f′(x) |
y=tan−1f(x) | dxdy=1+[f(x)]2f′(x) |
Financial Mathematics
A=P(1+r)n
Sequences and series
Tn=a+(n−1)d
Sn=2n[2a+(n−1)d]=2n(a+l)
Tn=arn−1
Sn=1−ra(1−rn)=r−1a(rn−1), r=1
S=1−ra, ∣r∣<1
Logarithmic and Exponential Functions
logaax=x=alogax
logax=logbalogbx
ax=exlna
Statistical Analysis
z=σx−μ
An outlier is a scoreless than or more than Q1−1.5×IQRQ3+1.5×IQR
Normal distribution
Normal distribution curve
Approximately 68% of scores have z-scores between -1 and 1
Approximately 95% of scores have z-scores between -2 and 2
Approximately 99.7% of scores have z-scores between -3 and 3
E(X)=μ
Var(X)=E[(X−μ)2]=E(X2)−μ2
Probability
P(A∩B)=P(A)P(B)
P(A∪B)=P(A)+P(B)−P(A∩B)
P(A∣B)=P(B)P(A∩B),P(B)=0
Continuous random variables
P(X≤r)=∫arf(x)dx
P(a<X<b)=∫abf(x)dx
Binomial distribution
P(X=r)=nCrpr(1−p)n−r
X∼Bin(n,p)
⇒P(X=x)=(xn)px(1−p)n−x,x=0,1,…,n
E(X)=np
Var(X)=np(1−p)
Integral Calculus
∫f′(x)[f(x)]ndx=n+11[f(x)]n+1+cwhere n=−1
∫f′(x)sinf(x)dx=−cosf(x)+c
∫f′(x)cosf(x)dx=sinf(x)+c
∫f′(x)sec2f(x)dx=tanf(x)+c
∫f′(x)ef(x)dx=ef(x)+c
∫f(x)f′(x)dx=ln∣f(x)∣+c
∫f′(x)af(x)dx=lnaaf(x)+c
∫a2−[f(x)]2f′(x)dx=sin−1af(x)+c
∫a2+[f(x)]2f′(x)dx=a1tan−1af(x)+c
∫udxdvdx=uv−∫vdxdudx
∫abf(x)dx≈2nb−a{f(a)+f(b)+2[f(x1)+⋯+f(xn−1)]}where a=x0 and b=xn
Combinatorics
nPr=(n−r)!n!
(rn)=nCr=r!(n−r)!n!
(x+a)n=xn+(1n)xn−1a+⋯+(rn)xn−rar+⋯+an
Vectors
∣∼u∣=∣x∼i+y∼j∣=x2+y2
∼u⋅∼v=∣∼u∣∣∼v∣cosθ=x1x2+y1y2,where ∼u=x1∼i+y1∼jand ∼v=x2∼i+y2∼j
r=a+λb
Complex Numbers
z=a+ib=r(cosθ+isinθ)=reiθ
[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ)=rneinθ
Mechanics
dt2d2x=dtdv=vdxdv=dxd(21v2)
x=acos(nt+α)+c
x=asin(nt+α)+c
x¨=−n2(x−c)
Measurement
Length
l=360θ×2πr
Area
A=360θ×πr2
A=2h(a+b)
Surface area
A=2πr2+2πrh
A=4πr2
Volume
V=31Ah
V=34πr3
Functions
x=2a−b±b2−4ac
For ax3+bx2+cx+dα+β+γαβ+αγ+βγandαβγ=0:=−ab=ac=−ad
Relations
(x−h)2+(y−k)2=r2
Financial Mathematics
A=P(1+r)n
Sequences and series
Tn=a+(n−1)d
Sn=2n[2a+(n−1)d]=2n(a+l)
Tn=arn−1
Sn=1−ra(1−rn)=r−1a(rn−1), r=1
S=1−ra, ∣r∣<1
Logarithmic and Exponential Functions
logaax=x=alogax
logax=logbalogbx
ax=exlna
Trigonometric Functions
sinA=hypopp,cosA=hypadj,tanA=adjopp
A=21absinC
sinAa=sinBb=sinCc
c2=a2+b2−2abcosC
cosC=2aba2+b2−c2
l=rθ
A=21r2θ
Isoceles triangle
Special right-angled triangle
Trigonometric identities
secA=cosA1,cosA=0
cosecA=sinA1,sinA=0
cotA=sinAcosA,sinA=0
cos2x+sin2x=1
Compound angles
sin(A+B)=sinAcosB+cosAsinB
cos(A+B)=cosAcosB−sinAsinB
tan(A+B)=1−tanAtanBtanA+tanB
If t=tan2A then: sinAcosAtanA=1+t22t=1+t21−t2=1−t22t
cosAcosB=21[cos(A−B)+cos(A+B)]
sinAsinB=21[cos(A−B)−cos(A+B)]
sinAcosB=21[sin(A+B)+sin(A−B)]
cosAsinB=21[sin(A+B)−sin(A−B)]
sin2nx=21(1−cos2nx)
cos2nx=21(1+cos2nx)
Statistical Analysis
z=σx−μ
An outlier is a scoreless than or more than Q1−1.5×IQRQ3+1.5×IQR
Normal distribution
Normal distribution curve
Approximately 68% of scores have z-scores between -1 and 1
Approximately 95% of scores have z-scores between -2 and 2
Approximately 99.7% of scores have z-scores between -3 and 3
E(X)=μ
Var(X)=E[(X−μ)2]=E(X2)−μ2
Probability
P(A∩B)=P(A)P(B)
P(A∪B)=P(A)+P(B)−P(A∩B)
P(A∣B)=P(B)P(A∩B),P(B)=0
Continuous random variables
P(X≤r)=∫arf(x)dx
P(a<X<b)=∫abf(x)dx
Binomial distribution
P(X=r)=nCrpr(1−p)n−r
X∼Bin(n,p)
⇒P(X=x)=(xn)px(1−p)n−x,x=0,1,…,n
E(X)=np
Var(X)=np(1−p)
Differential Calculus
Function | Derivative |
---|---|
y=f(x)n | dxdy=nf′(x)[f(x)]n−1 |
y=uv | dxdy=udxdv+vdxdu |
y=g(u) where u=f(x) | dxdy=dudy×dxdu |
y=vu | dxdy=v2vdxdu−udxdv |
y=sinf(x) | dxdy=f′(x)cosf(x) |
y=cosf(x) | dxdy=−f′(x)sinf(x) |
y=tanf(x) | dxdy=f′(x)sec2f(x) |
y=ef(x) | dxdy=f′(x)ef(x) |
y=lnf(x) | dxdy=f(x)f′(x) |
y=af(x) | dxdy=(lna)f′(x)af(x) |
y=logaf(x) | dxdy=(lna)f(x)f′(x) |
y=sin−1f(x) | dxdy=1−[f(x)]2f′(x) |
y=cos−1f(x) | dxdy=−1−[f(x)]2f′(x) |
y=tan−1f(x) | dxdy=1+[f(x)]2f′(x) |
Integral Calculus
∫f′(x)[f(x)]ndx=n+11[f(x)]n+1+cwhere n=−1
∫f′(x)sinf(x)dx=−cosf(x)+c
∫f′(x)cosf(x)dx=sinf(x)+c
∫f′(x)sec2f(x)dx=tanf(x)+c
∫f′(x)ef(x)dx=ef(x)+c
∫f(x)f′(x)dx=ln∣f(x)∣+c
∫f′(x)af(x)dx=lnaaf(x)+c
∫a2−[f(x)]2f′(x)dx=sin−1af(x)+c
∫a2+[f(x)]2f′(x)dx=a1tan−1af(x)+c
∫udxdvdx=uv−∫vdxdudx
∫abf(x)dx≈2nb−a{f(a)+f(b)+2[f(x1)+⋯+f(xn−1)]}where a=x0 and b=xn
Combinatorics
nPr=(n−r)!n!
(rn)=nCr=r!(n−r)!n!
(x+a)n=xn+(1n)xn−1a+⋯+(rn)xn−rar+⋯+an
Vectors
∣∼u∣=∣x∼i+y∼j∣=x2+y2
∼u⋅∼v=∣∼u∣∣∼v∣cosθ=x1x2+y1y2,where ∼u=x1∼i+y1∼jand ∼v=x2∼i+y2∼j
r=a+λb
Complex Numbers
z=a+ib=r(cosθ+isinθ)=reiθ
[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ)=rneinθ
Mechanics
dt2d2x=dtdv=vdxdv=dxd(21v2)
x=acos(nt+α)+c
x=asin(nt+α)+c
x¨=−n2(x−c)