HSC
HSC
Length
Area
Surface area
Volume
Relations
Trigonometric identities
Compound angles
| Function | Derivative |
|---|---|
| y=f(x)n | dxdy=nf′(x)[f(x)]n−1 |
| y=uv | dxdy=udxdv+vdxdu |
| y=g(u) where u=f(x) | dxdy=dudy×dxdu |
| y=vu | dxdy=v2vdxdu−udxdv |
| y=sinf(x) | dxdy=f′(x)cosf(x) |
| y=cosf(x) | dxdy=−f′(x)sinf(x) |
| y=tanf(x) | dxdy=f′(x)sec2f(x) |
| y=ef(x) | dxdy=f′(x)ef(x) |
| y=lnf(x) | dxdy=f(x)f′(x) |
| y=af(x) | dxdy=(lna)f′(x)af(x) |
| y=logaf(x) | dxdy=(lna)f(x)f′(x) |
| y=sin−1f(x) | dxdy=1−[f(x)]2f′(x) |
| y=cos−1f(x) | dxdy=−1−[f(x)]2f′(x) |
| y=tan−1f(x) | dxdy=1+[f(x)]2f′(x) |
Sequences and series
Normal distribution
Probability
Continuous random variables
Binomial distribution
Length
Area
Surface area
Volume
Relations
Sequences and series
Trigonometric identities
Compound angles
Normal distribution
Probability
Continuous random variables
Binomial distribution
| Function | Derivative |
|---|---|
| y=f(x)n | dxdy=nf′(x)[f(x)]n−1 |
| y=uv | dxdy=udxdv+vdxdu |
| y=g(u) where u=f(x) | dxdy=dudy×dxdu |
| y=vu | dxdy=v2vdxdu−udxdv |
| y=sinf(x) | dxdy=f′(x)cosf(x) |
| y=cosf(x) | dxdy=−f′(x)sinf(x) |
| y=tanf(x) | dxdy=f′(x)sec2f(x) |
| y=ef(x) | dxdy=f′(x)ef(x) |
| y=lnf(x) | dxdy=f(x)f′(x) |
| y=af(x) | dxdy=(lna)f′(x)af(x) |
| y=logaf(x) | dxdy=(lna)f(x)f′(x) |
| y=sin−1f(x) | dxdy=1−[f(x)]2f′(x) |
| y=cos−1f(x) | dxdy=−1−[f(x)]2f′(x) |
| y=tan−1f(x) | dxdy=1+[f(x)]2f′(x) |